Using Digital Technologies to Ensure Fire and Environmental Safety in Document Storage, Cultural and Historical Value Institutions

Keywords: Civil Protection, Digital Technologies, Emergency Prevention

Abstract

Purpose. The purpose of this work is to develop approaches aimed at preventing emergencies in institutions responsible for storing documents, cultural, and historical assets, based on the use of digital technologies to ensure their fire and environmental safety.

Method. An analytical approach based on a review of modern scientific sources related to the digitalization of civil protection, fire detection systems, the Internet of Things, and advanced environmental monitoring technologies.

Findings. An improved emergency response algorithm has been developed based on rapid data acquisition from interconnected sensors (temperature, humidity, acoustic) via the Internet of Things. Tools for online staff training and internal communication are proposed, increasing personnel awareness and readiness for incident response. A comprehensive system has been formed to enhance the prevention, detection, and localization of fires and environmental threats in institutions preserving cultural and historical assets.

Theoretical implications. The study extends theoretical approaches to fire and environmental safety by integrating IoT concepts, digital monitoring, and intelligent platforms. It substantiates the compatibility of modern digital technologies with civil protection regulations, providing a foundation for further research on digital safety systems in socially and culturally significant institutions.

Practical implications. The proposed solutions are applicable in museums, libraries, archives, and similar institutions. Their accessibility is ensured through the use of low-cost sensors, open platforms, and widely used messaging tools. Implementation improves environmental and fire monitoring, accelerates coordination among responsible staff, enhances personnel competence, and enables alternative alert channels when conventional mobile communication is unavailable.

Originality. This study is the first to propose an integrated approach combining IoT technologies, acoustic fire suppression, digital environmental monitoring, and online educational tools for cultural heritage institutions. The originality lies in the synergy of technical and communication solutions, forming a flexible and cost-effective safety system suitable for high-risk and resource-constrained environments.

Research limitations. The solutions require adaptation to diverse architectural and technical conditions and lack experimental validation in real institutions. Future research should focus on developing and testing IoT prototypes, updating regulatory frameworks, integrating artificial intelligence for risk prediction, and assessing the economic feasibility of digital safety ecosystems.

Paper type. Review.

Downloads

Download data is not yet available.

References

Yu, D., Tao, Q., Liu, Q., Jin, Y., Sun, Y., Fu, P. Lifecycle management of urban renewal enabled by internet of things: Development, application, and challenges. Results in Engineering, 2025, 105706. https://doi.org/10.1016/j.rineng.2025.105706.

Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., Liang, F. Smart Transportation: An Overview of Technologies and Applications. Sensors, 2023, 23(8), 3880. https://doi.org/10.3390/s23083880.

Duque, J. The IoT to Smart Cities - A design science research approach. Procedia Computer Science, 2023, 219, 279–285. doi: https://doi.org/10.1016/j.procs.2023.01.291.

Smart Home Automation and security using Raspberry Module. International Research Journal of Modernization in Engineering Technology and Science, 2024. https://doi.org/10.56726/irjmets48848.

Ferrisi, S. Sustainability Awareness in Manufacturing: A Review of IoT Audio Sensor Applications in the Industry 5.0 Era. Sensors, 2025, 25, 3041. https://doi.org/10.3390/s25103041.

Ortiz, J.S., Quishpe, E.K., Sailema, G.X., Guamán, N.S. Digital Twin-Based Active Learning for industrial process control and supervision in industry 4.0. Sensors, 2025, 25, 2076. https://doi.org/10.3390/s25072076.

Pan, G., Xie, Y., Yang, Q. IoT-based cloud monitoring system for building fires. International Journal of Metrology and Quality Engineering, 2025, Vol. 16, P. 1. https://doi.org/10.1051/ijmqe/2024020.

Senchenko, V. R., et al. (2024). Ohliad metodiv i tekhnolohii stsenarnoho analizu kaskadnykh efektiv [Review of methods and technologies of scenario analysis of cascading effects]. Reiestratsiia, zberihannia i obrobka danykh, 26(1), 24–54. https://doi.org/10.35681/1560-9189.2024.26.1.308506

Loboichenko, V., Hruzdova, Yu., Koloshko, V., Strilets, O., & Myroshnyk, O. (2023). Rozrobka mekhanizmiv ekolohizatsii protsesiv povodzhennia z vidkhodamy v povoiennii Ukraini yak skladova pidvyshchennia stanu yii tsyvilnoi bezpeky [Development of mechanisms for greening waste management processes in post-war Ukraine as a component of improving civil security]. Nadzvychaini sytuatsii: poperedzhennia ta likvidatsiia, 7(2), 152–164.

Mojabi, N.S.M., Ghourchi, M., Feizi, F. Adverse consequences of conflicts and wars on environment and public health. 2010 International Conference on Environmental Engineering and Applications, Singapore, 2010, С. 125–129. https://doi.org/10.1109/iceea.2010.5596109.

Human Rights Watch. (2025). Ukraina podii 2024 roku [Ukraine: Events of 2024]. https://www.hrw.org/uk/world-report/2025/country-chapters/ukraine

Hetmanenko, O. Macroeconomic Implications of the War in Ukraine: An In-Depth Analysis. Economics: time realities, 2025, 3(79), 58–65. https://doi.org/10.15276/etr.03.2025.6.

Ministry of Environmental Protection and Natural Resources of Ukraine. (2025, July 11). Svitlana Hrynchuk: Zbytky dovkilliu vid viiny vzhe siahaiut 108 mlrd yevro… [Svitlana Hrynchuk: Environmental damage from the war has already reached €108 billion…]. https://mepr.gov.ua/svitlana-grynchuk-zbytky-dovkillyu-vid-vijny-vzhe-syagayut-108-mlrd-yevro-vidnovlennya-ye-pytannyam-ne-lyshe-natsionalnoyi-bezpeky-ale-j-bezpeky-vsogo-kontynentu/

Reddy, R.A., Ravindar, B., Mateti, J. Research Mapping in Smart Cities: A scientometric study on IOT and AI applications. In: Communications in Computer and Information Science, 2025, P. 313–324. https://doi.org/10.1007/978-3-032-00983-8_24.

Tippe, M., Wigger, H., Brand-Daniels, U. et al. Operationalising user behaviour: a study on the life cycle assessment of smart home technologies. Energy Sustainability Society, 2025, 15(1). https://doi.org/10.1186/s13705-024-00506-8.

Barbone, A., Bicocchi, N., Martinelli, M., Morandi, R., Picone, M. On-Device AI and Digital Twins: a synergistic approach to intelligent Cyber-Physical systems. Future Generation Computer Systems, 2025, 108068. https://doi.org/10.1016/j.future.2025.108068.

Xu, Y., Huang, W., Xiao, J., Shan, J., Liu, M., Guo, W., Zhu, Y., Zhang, J., Yan, Y. A WebGIS-based digital twin platform for intelligent operation and maintenance of rail transit infrastructure. Expert Systems With Applications, 2025, 296, 129180. https://doi.org/10.1016/j.eswa.2025.129180.

Biosphère. https://www.parcjeandrapeau.com/fr/biosphere-musee-de-environnement-montreal/.

Muzei vtorynnoi syrovyny [Recycling Museum]. (n.d.). https://ksandraowlet.wixsite.com/kyiv-musei/muzej-vtorinnoyi-sirovini

Frietmuseum Brussels. URL: https://www.frietmuseum-brussels.be/eng/home.

The Waterworks Museum. URL: https://waterworksmuseum.org/.

Kharkivskyi istorychnyi muzei im. M. F. Sumtsova [Kharkiv Historical Museum named after M. F. Sumtsov]. (n.d.). https://museum.kh.ua/about/

British Museum. URL: https://www.britishmuseum.org/.

Louvre. Virtual tours. URL: https://www.louvre.fr/en/online-tours#tabs.

Education. Waterworks Museum. URL: https://waterworksmuseum.org/education/.

Natsionalna biblioteka Ukrainy imeni V. I. Vernadskoho [Vernadsky National Library of Ukraine]. (n.d.). http://www.nbuv.gov.ua/node/4445

Kharkivska derzhavna naukova biblioteka imeni V. H. Korolenka [Kharkiv State Scientific Library named after V. H. Korolenko]. (n.d.). https://korolenko.kharkov.com/

Natsionalna biblioteka Ukrainy imeni Yaroslava Mudroho [Yaroslav the Wise National Library of Ukraine]. (n.d.). https://nlu.org.ua/

Tsentralnyi derzhavnyi kinofotofonoarkhiv Ukrainy im. H. S. Pshenychnoho [Central State CinePhotoPhono Archive of Ukraine]. (n.d.). https://tsdkffa.archives.gov.ua/

Tsentralnyi derzhavnyi naukovo-tekhnichnyi arkhiv Ukrainy [Central State Scientific and Technical Archive of Ukraine]. (n.d.). https://cdnta.archives.gov.ua/

Derzhavna arkhivna sluzhba Ukrainy [State Archival Service of Ukraine]. (n.d.). https://searcharchives.net.ua/

Ostapov, K. M., Chaplyhin, O. S., Lisniak, A. A., Hrytsyna, I. M., Shevchenko, S. M., & Kryvoruchko, Ye. M. (2024). Optymizatsiia skladu neitralnykh haziv dlia pozhezhogasinnia u fondoskhovyshchakh muzeiv [Optimization of neutral gas composition for fire suppression in museum storage facilities]. Problemy nadzvychainykh sytuatsii, 2, 99–112. http://nbuv.gov.ua/UJRN/Pns_2024_2_10

Ministry of Regional Development of Ukraine. (2015). DBN V.2.5-56:2014 Systemy protypozhezhnoho zakhystu [Fire protection systems]. Kyiv: Minrehion Ukrainy.

Ministry of Justice of Ukraine. (2017). Pro zatverdzhennia Pravyl pozhezhnoi bezpeky dlia arkhivnykh ustanov Ukrainy [On approval of fire safety rules for archival institutions of Ukraine]. https://zakon.rada.gov.ua/laws/show/z1446-17#Text

Loboichenko, V. M., Diviziniuk, M. M., Shevchenko, R. I., Fedorchuk-Moroz, V. I., & Rashkevych, N. V. (2025). Metody poperedzhennia nadzvychainykh sytuatsii tekhnohennoho ta medyko-biolohichnoho kharakteru… [Methods of preventing technogenic and medico-biological emergencies at critical infrastructure facilities] (Monograph). Lutsk: Vezha-Druk.

Podobied, I. (2024). Tsyfrovizatsiia yak suchasnyi trend transformatsii resursnoho mekhanizmu systemy tsyvilnoho zakhystu [Digitalization as a modern trend in transforming the resource mechanism of the civil protection system]. Naukovyi visnyk: Derzhavne upravlinnia, 1(15), 82–103. https://doi.org/10.33269/2618-0065-2024-1(15)-82-103

Pavliv, V., Bukareva, O., Mykhaliuk, A., & Loboichenko, V. M. (2023). Tsyfrovi tekhnolohii v zabezpechenni minnoi nebezpeky v Ukraini [Digital technologies in ensuring mine safety in Ukraine]. Studentskyi naukovyi visnyk, 50, 246–252.

AlQahtani A. A. S., et al. (2025). From Inception to Innovation: A Comprehensive Review and Bibliometric Analysis of IoT-Enabled Fire Safety Systems. Safety, 11(2), 41. https://doi.org/10.3390/safety11020041.

Wang Z., Wang Y., Liao M., Sun Y., Wang S., Sun X., Shi X., Kang Y., Tian M., Bao T., Lu R. (2024). FirESonic: Design and implementation of an Ultrasound Sensing-Based Fire Type Identification System. Sensors, 24, 4360. https://doi.org/10.3390/s24134360.

Loboichenko, V., Koloshko, Yu., Hruzdova, V., Khmyrova, A., Shevchenko, O., & Shevchenko, R. (2024). Zastosuvannia mesendzheriv dlia pobudovy arkhitektury systemy zboru budivelnykh vidkhodiv… [Use of messengers in designing an architecture for collecting construction waste generated by hostilities]. Komunalne hospodarstvo mist, 6(187), 266–277. https://doi.org/10.33042/2522-1809-2024-6-187-266-277

Sumaiya M. N., Vineeth J., Sali P., Supreeth G. R., Supreeth R. (2023). Intelligent Autopilot Fire Extinguishing Robot. In Intelligent Edge Computing for Cyber Physical Applications. Elsevier, 129–149. https://doi.org/10.1016/B978-0-323-99412-5.00002-2.

Bogue R. (2020). The Role of Robots in Firefighting. Industrial Robot, 48, 174–178. https://doi.org/10.1108/IR-10-2020-0222.

Tan S. Q. Y., Karthik V. J., Govind A., Rajasree P. M. (2023). An Approach into Navigation and Vision for Autonomous Fire Fighting Robots. International Journal of Advanced Mechatronic Systems, 10, 156–164. https://doi.org/10.1504/IJAMECHS.2023.132522.

Loboichenko V., Wilk-Jakubowski J. L., Levterov A., Wilk-Jakubowski G., Statyvka Y., Shevchenko O. (2024). Using the Burning of Polymer Compounds to Determine the Applicability of the Acoustic Method in Fire Extinguishing. Polymers, 16(23), 3413. https://doi.org/10.3390/polym16233413.

Rai S. K. (2024). IOT Based Portable Fire Extinguisher using Acoustic Setup. Panamerican Mathematical Journal, 33(4), 15–29. https://doi.org/10.52783/pmj.v33.i4.889.

Pincott J., Tien P. W., Wei S., Calautit J. K. (2022). Indoor Fire Detection Utilizing Computer Vision-Based Strategies. Journal of Building Engineering, 61. https://doi.org/10.1016/j.jobe.2022.105154.

Carletti V., Greco A., Saggese A., Vento B. (2024). A Smart Visual Sensor for Smoke Detection Based on Deep Neural Networks. Sensors, 24, 4519. https://doi.org/10.3390/s24144519.

Kundu S., Dey S., Abdullha Md. M., Sen G., Gangopadhyay M. (2025). Designing and Implementing an IoT-Based Long-Distance Fire-Extinguishment System “Stationary 3-Axis Fire-Emergency Response Base”. Proceedings of 8th International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech 2025), 1–6. https://doi.org/10.1109/iementech65115.2025.10959508.

Shilpa K., Sangharsha M., Sujata T., Rakshanda P., Prof. S. M. (2020). Fire Extinguishing Robot using IoT. Research and Reviews: Advancement in Robotics, 3(1), 1–4. https://doi.org/10.5281/zenodo.3731047.

Ai D. H., Nguyen V. L., Luong K. T., Le V. T. (2025). Applications of Artificial Intelligence in Indoor Fire Prevention and Fighting. IAES International Journal of Artificial Intelligence, 14, 2646–2654. https://doi.org/10.11591/ijai.v14.i4.pp2646-2654.

Bhattacharya D., Ali I. (2025). AI Enabled Swarm Application for Fire-Fighting Bots over Web-Bluetooth APIs. In Smart Innovation, Systems and Technologies, 233–247. https://doi.org/10.1007/978-981-97-8355-7_20.

Selvaraj K., Perumal M. K., Akash C. R., Kumar V. M., Sobika M., Suruthi S. (2025). Safeguarding Heritage: Acoustic Fire Suppression with IoT for Museum Applications. Proceedings of the 3rd International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS 2025), 111–116. https://doi.org/10.1109/icssas66150.2025.11080799.

Khan F., Xu Z., Sun J., Khan F. M., Ahmed A., Zhao Y. (2022). Recent Advances in Sensors for Fire Detection. Sensors, 22(9), 3310. https://doi.org/10.3390/s22093310.

Wilk-Jakubowski J. L., Loboichenko V., Divizinyuk M., Wilk-Jakubowski G., Shevchenko R., Ivanov S., Strelets V. (2025). Acoustic Waves and Their Application in Modern Fire Detection Using Artificial Vision Systems: A Review. Sensors, 25(3), 935. https://doi.org/10.3390/s25030935.

Dera P., Talaśka T., Długosz R. (2025). A New, Cost-Efficient Modular Sensor Platform for IoT and Predictive Maintenance in Industrial Applications. Journal of Computational and Applied Mathematics, 473, 116777. https://doi.org/10.1016/j.cam.2025.116777.

Chen J., González Ó., O’Connor D., Tallon L., Pilla F. (2025). Assessment of IoT Low-Cost Sensor Networks for Long-Term Outdoor and Indoor Air Quality Monitoring: A Case Study in Dublin. Atmospheric Pollution Research, 102651. https://doi.org/10.1016/j.apr.2025.102651.

Parkavi A., Sowmya B. J., Alex S. A., et al. (2025). Air Quality and Dust Level Monitoring Systems in Hospitals Using IoT. Discover Internet of Things, 5, 23. https://doi.org/10.1007/s43926-025-00120-w.


Abstract views: 89
PDF Downloads: 56
Published
2025-12-31
How to Cite
Loboichenko, V., Koloshko, Y., Hruzdova, V., Samchuk, I., Pohrebna, Y., & Shevchenko, R. (2025). Using Digital Technologies to Ensure Fire and Environmental Safety in Document Storage, Cultural and Historical Value Institutions. Social Development and Security, 15(6), 202-214. https://doi.org/10.33445/sds.2025.15.6.19
Section
Civil Security

Most read articles by the same author(s)