Clustering and Classification of Enemy Group Targets Based on Neural Networks

Keywords: clustering, classification, neural network, group target, unmanned aerial vehicles, swarm, convolutional neural networks, Russian-Ukrainian war

Abstract

Purpose: The purpose of the article is to reveal the main aspects of the formation of a strategic leader and his red team in the military sphere, as well as to determine the specifics of his mission in the highest echelon of the state's military management system.

Method: the main methods of research are methods of analysis, induction and deduction; formalization and expert survey.

Findings: the main results of the article are: the results of the analysis of foreign and domestic studies devoted to the topic of leadership development in the military sphere; identification and assessment of the main factors that affect the effectiveness of the strategic military leader and his red team; identification of the main members of the strategic military leader's red team; defining the features of forming the image of a strategic military leader.

Theoretical implications: the theoretical value of the research lies in determining the main aspects of the formation of a strategic leader and his red team.

Paper type: theoretical, descriptive, methodical.

Downloads

Download data is not yet available.

References

Shovkoshytnyi I.I., Vasylenko O.A. Rozroblennia lohiko-chasovoi modeli roiovoho zastosuvannia udarnykh bezpilotnykh litalnykh aparativ z urakhuvanniam typovykh sposobiv yikh hrupovoho zastosuvannia v suchasnykh umovakh. Zbirnyk naukovykh prats Tsentru voienno-stratehichnykh doslidzhen Natsionalnoho universytetu oborony Ukrainy. 2024. № 3 (83). S. 108–116.

Nikitina L. O., Nikitin S. O. Modeli ta metody shtuchnoho intelektu u kompiuternykh ihrakh. Xarkiv: «Drukarnia Madryd», 2018. 102 s.

Metody ta systemy shtuchnoho intelektu: navch. pos. / Ukl. D. V. Lubko, S. V. Sharov. Melitopol: FOP Odnoroh T. V., 2019. 264 s.

Shtuchnyi intelekt i neiromerezhi. 12 knyzhok v odnii, shcho dopomozhut Vam vtilyty innovatsii v zhyttia. Kharkiv: TOV «Monolit Bizz», 2024. 216 s.

Ivashchenko A. Informatsiine ta prohramne zabezpechennia systemy identyfikatsii bezpilotnykh litalnykh aparativ. Kvalif. robota bakalavra. Sumy: Sumskyi derzh. un-t, 2022. Available from : https://essuir.sumdu.edu.ua/bitstream-download/123456789/88897/1/Ivashchenko_bac_rob.pdf

Ohanezov A. L. Prymenenye neironnыkh setei v zadachakh raspoznavanyia obrazov. Avtoref. dyss. … kand. fyz.-mat. nauk: 05.13.11. Tbylysy. 2006. 20 s.

Perepelitsyn S. O. Systema zakhystu vid zahroz udaru BpLA iz vykorystanniam blokiv neiromerezhevoho analizu. Naukoiemni tekhnolohii. 2020. № 1 (45). https://doi.org/10.18372/2310-5461.45.14579.

Husak Yu. A., Vasylenko O. A. Klasteryzatsiia ta klasyfikatsiia udarnykh bezpilotnykh litalnykh aparativ na osnovi neironnykh merezh // Povitriana mits Ukrainy. 2024. № 1 (6). S. 141–152. https://doi.org/10.33099/2786-7714-2024-1-6-141-152.

Husak Yu. A., Vasylenko O. A. Alhorytm stvorennia neironnoi merezhi klasyfikatsii udarnykh bezpilotnykh litalnykh aparativ. Suchasni informatsiini tekhnolohii u sferi bezpeky ta oborony. 2024. № 2 (50). S. 54–68. https://doi.org/10.33099/2311-7249/2024-50-2-54-68.

Berezhnyi A. O. Metody ta informatsiina tekhnolohiia avtomatyzovanoho planuvannia marshrutiv polotiv bezpilotnykh litalnykh aparativ dlia pidvyshchennia efektyvnosti poshuku obiektiv. Dys. … kand. tekhn. nauk. 05.13.06. Kharkiv: KhNUPS, 2020.

Dovidnyk z MATLAB: elektronnyi navch. pos. z kursovoho i dyplomnoho proektuvannia. Kyiv: NTUU «KPI», 2013. 132 c.

Tereikovskyi I. A., Bushuiev D. A., Tereikovska L. O. Shtuchni neironni merezhi: bazovi polozhennia. Kyiv: NTUU «KPI», 2022. 123 s.


Abstract views: 19
PDF Downloads: 11
Published
2025-04-30
How to Cite
Husak, Y., & Vasylenko, O. (2025). Clustering and Classification of Enemy Group Targets Based on Neural Networks. Social Development and Security, 15(2), 220-232. https://doi.org/10.33445/sds.2025.15.2.18
Section
Engineering and Technology