Protective Layered Model of a Multi-Component Architectural-Composite Structure of an Optoelectronic Information Leakage Channel
Abstract
Purpose. Development of a protective model of a multi-component architectural-composite structure of an optoelectronic information leakage channel, which, unlike existing approaches, takes into account the complex interaction of layered elements and allows for a more accurate assessment and minimization of the risks of speech information leakage.
Method. Theoretical generalization and practical modeling based on the results of previous empirical studies.
Findings. А protective model of a multi-component architecturally-composed structure of an optoelectronic information leakage channel has been constructed, which takes into account the combination of layered elements, the response from the passage of a laser beam into the interior of the premises and in the opposite direction, and is deployed at the level of an aggregate and complex model. A mathematical model has been developed that describes the minimization of information loss through the optoelectronic information leakage channel from the Laser Acoustic Reconnaissance Systems, allowing to determine the optimal amount of risk reduction for each hypothetical layer of the source material, which, in turn, corresponds to the maximum degree of security of the premises.
Theoretical implications. The study develops the theoretical foundations of information protection by proposing a complex model of the optoelectronic leakage channel, which takes into account the complex processes of interaction of laser radiation with multilayer structures.
Practical implications. The research provides a scientific basis for the design and optimization of protective systems, allowing to achieve the most effective counteraction to laser acoustic reconnaissance systems by targeted influence on the physical properties of multilayer architectural components. The results of the research can be used to modernize existing information protection systems, for example, by developing new types of protective films or coatings for windows.
Value. The study demonstrates that the developed model and the obtained results can be used to create more effective protection tools, which will contribute to increasing the security of information systems and objects and stimulate further interdisciplinary research in this important field.
Downloads
References
Ivanchenko, S. O., Havrylenko, O. V., Lypsʹkyy, O. A., & Shevtsov, A. S. (2016). Tekhnichni kanaly vy·toku informatsiyi. Poryadok stvorennya kompleksiv tekhnichnoho zakhystu informatsiyi: Navch. posib. [Technical channels of information leakage. The procedure for creating complexes of technical information protection: Tutorial]. ISZZI NTUU «KPI».
Horbenko, I., & Kovalchuk, Y. (2008). Otsinka kharakterystyk lazernoho kanalu vy·toku movnoyi informatsiyi z urakhuvannyam bahatomodovoho vy·prominyuvannya lazera [Evaluation of the characteristics of the laser channel of speech information leakage taking into account multimode laser radiation]. Pravove, normatyvne ta metrolohichne zabezpechennya systemy zakhystu informatsiyi v Ukrayini, (2), 83-88.
Hromyko, I. O. (2006). Zahalʹna paradyhma zakhystu informatsiyi: vyznachennya terminiv vid nosiyiv do kanaliv vy·toku informatsiyi [General paradigm of information security: Definition of terms from media to information leakage channels]. Systemy obrobky informatsiyi, 9(58), 3-9.
Dudykevych, V. B., Sobchuk, I. S., Rakobovchuk, V. O., & Lych, S. V. (2015). Doslidzhennya vlastyvostey plivok na osnovi dioksydu hafniyu dlya zakhystu informatsiyi vid lazernoho zonduvannya [Investigation of the properties of hafnium dioxide-based films for information protection against laser sounding]. Zakhyst informatsiyi i bezpeka informatsiynykh system: materialy IV mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi (pp. 185–186).
Dudykevych, V. B., Rakobovchuk, V. O., Haranyuk, P. I., & Dey, V. A. (2014). Vplyv dielektrychnoho pokryttya na zakhysni vlastyvosti skla vid vy·toku informatsiyi cherez optyko-elektronnyy kanal [The effect of dielectric coating on the protective properties of glass against information leakage through the optoelectronic channel]. Problemy stvorennya, rozvytku ta zastosuvannya vysokotekhnichnykh system spetsialʹnoho pryznachennya: Tezy dopovidey 20 Vseukr. nauk.-prakt. konf., 196-197.
Katayev, V., & Yaremchuk, Y. (2019). Metod aktyvnoho zakhystu informatsiyi vid znyattya lazernymy systemamy akustychnoyi rozvidky [Method of active information protection against removal by laser systems of acoustic reconnaissance]. Zakhyst informatsiyi, 21(1), 34-39. https://doi.org/10.18372/2410-7840.21.13545
Abramov, P. I., Kuznetsov, E. V., & Skvortsov, L. A. (2017). Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review. J. Opt. Technol., 84, 331-341.
Horev, A., & Savin, A. (2021). Efficiency Research of Sun Protection Window Films for Speech Information Protection from LEAKAGE by Optoelectronic Channel. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (pp. 2335-2339). https://doi.org/10.1109/ElConRus51938.2021.9396253
Klochko, N. P., Barbash, V. A., Klepikova, K. S., Kopach, V. R., Tyukhov, I. I., Yashchenko, O. V., Zhadan, D. O., Petrushenko, S. I., Dukarov, S. V., Sukhov, V. M., & Khrypunova, A. L. (2021). Biodegradable flexible transparent films with copper iodide and biomass-derived nanocellulose for ultraviolet and high-energy visible light protection. Solar Energy, 220, 852-863. https://doi.org/10.1016/j.solener.2021.04.014
Zeng, U., Pan, B., Cao, Y., & Ai, H. (2021). Test and analysis of window vibration for anti-laser-eavesdropping. Applied Acoustics, 176, 107871. https://doi.org/10.1016/j.apacoust.2020.107871
Kradolfer, S., Heutschi, K., Koch, J., & Gunther, D. (2021). Listening with curiosity—tracking the acoustic response of portable laser ablation. Chimia, 75(4), 300-304. https://doi.org/10.2533/Chimia.2021.300
Li, L., Zeng, H., Zhang, Y., Kong, Q., Zhou, Y., & Liu, Y. (2014). Analysis of backscattering characteristics of objects for remote laser voice acquisition. Appl. Opt., 53, 971-978.
Zhang, W., Zhang, L., Liang, X., et al. (2017). Unconventional High-Performance Laser Protection System Based on Dichroic Dye-Doped Cholesteric Liquid Crystals. Sci Rep, 7, 42955. https://doi.org/10.1038/srep42955
Katayev, V., & Yaremchuk, Y. (2019). Metod aktyvnoho zakhystu informatsiyi vid znyattya lazernymy systemamy akustychnoyi rozvidky [Method of active information protection against removal by laser systems of acoustic reconnaissance]. Zakhyst informatsiyi, 21(1), 34-39. https://doi.org/10.18372/2410-7840.21.13545
Dzianyi, N., Dudykevych, V., Opirskyy, I., Rakobovcuk, L., & Haraniuk, P. (2022). Investigation of the protective capabilities of glass from laser sounding depending on its elemental composition. Eureka: Physics and Engineering, (5), 162–174. https://doi.org/10.21303/2461-4262.2022.002527
Rakobovcuk, L., Dzianyi, N., Antonevych, M. (2023). Захисні характеристики плівок від лазерних систем акустичної розвідки на прикладі одношарового відбиваючого покриття діоксиду гафнію [Protective characteristics of films from laser acoustic reconnaissance systems on the example of a single-layer reflective coating of hafnium dioxide]. Ukrainian Scientific Journal of Information Security, 29(1), 32-40. http://infosecurity.nau.edu.ua; https://doi.org/10.18372/2225-5036.29.17550
Dzianyi, N.R. (2019). Електропровідна плівка на вікна для захисту інформації від витоку оптоелектронним каналом [Electrically conductive film on windows for protecting information from leakage by optoelectronic channel]. Aktualʹni pytannya zabezpechennya kiberbezpeky ta zakhystu informatsiyi: tezy dopovidey uchasnykiv IV Mizhnar. nauk.-prakt. konf. (pp. 54-59). Vydavnytstvo Yevropeysʹkoho universytetu.
Parkhutsʹ, L. T., Sovyn, Y. R., & Rakobovchuk, L. M. (2024). Vplyv inter’yeru primishchennya na protydiyu lazernym systemam akustychnoyi rozvidky [The influence of the room interior on countering laser acoustic reconnaissance systems]. Kiberbezpeka: osvita, nauka, tekhnika, 3(23), 246-257.
Abstract views: 23 PDF Downloads: 6
Copyright (c) 2025 Nazarii Dzyanyi

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors agree with the following conditions:
1. Authors retain copyright and grant the journal right of first publication (Download agreement) with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors have the right to complete individual additional agreements for the non-exclusive spreading of the journal’s published version of the work (for example, to post work in the electronic repository of the institution or to publish it as part of a monograph), with the reference to the first publication of the work in this journal.
3. Journal’s politics allows and encourages the placement on the Internet (for example, in the repositories of institutions, personal websites, SSRN, ResearchGate, MPRA, SSOAR, etc.) manuscript of the work by the authors, before and during the process of viewing it by this journal, because it can lead to a productive research discussion and positively affect the efficiency and dynamics of citing the published work (see The Effect of Open Access).