Choice of weapon sample based on fuzzy logic in defense management measures

  • Mykola Bilokur Central Research Institute of Armaments and Military Equipment Armed Forces of Ukraine https://orcid.org/0000-0002-2954-8497
  • Evgen Sidorenko Central Armored Armaments Directorate of the Logistics Forces Command of the Armed Forces of Ukraine
  • Valeriy Khrebet Command of the Air Assault Forces of the Armed Forces of Ukraine
  • Ivan Gomola Logistics of Operational Command "West"
  • Viktor Hudyma The National Defence University of Ukraine named after Ivan Cherniakhovskyi https://orcid.org/0000-0003-4722-0601
  • Sergii Kopashynski The National Defence University of Ukraine named after Ivan Cherniakhovskyi https://orcid.org/0000-0001-8607-1309
Keywords: weapon model, improvement of the planning procedure, properties of weapons and military equipment samples during its assessment, the cost of the stages of the life cycle of weapons and military equipment samples

Abstract

The possibility of improving the capability-based planning process is being investigated in order to minimize the need for weapons and military equipment and to maximize the acquisition of capabilities during their life cycle. Using the theory of fuzzy sets, the assessment of alternative samples of weapons and military equipment is carried out. A fuzzy inference model for determining the usefulness of weapons and military equipment in acquiring opportunities has been developed, based on fuzzy logic. The modeling of alternative models of weapons and military equipment was carried out in terms of costs at the stages of the life cycle “Use” and “Support” using the modern software environment MATLAB. The simulation results provided an opportunity at the planning stage to improve the efficiency of defense resource management using the value of the usefulness of weapons and military equipment. The introduction of the developed model into defense management makes it possible to automatically determine weapons and military equipment without the participation of experts, taking into account the cost of their life cycle and to bring the planning process closer to Euro-Atlantic approaches.

Downloads

Download data is not yet available.

Author Biographies

Mykola Bilokur , Central Research Institute of Armaments and Military Equipment Armed Forces of Ukraine

PhD student

Evgen Sidorenko , Central Armored Armaments Directorate of the Logistics Forces Command of the Armed Forces of Ukraine

deputy head of department

Viktor Hudyma, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD in Engineering Science, Lecturer at the Department of Technical Support of the Institute for Support of Troops (forces) and Information Technologies

Sergii Kopashynski, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD, Senior Research Fellow, Head of the Department of Technical Support

References

Chepkov I. B., Bilokur M. O., Sotnik V.V., Borohvostov I. V., Bondarchuk, M. V. (2019) PorIvnyalniy analIz sistem oboronnogo planuvannya v SShA ta UkraYinI. OzbroEnnya ta vIyskova tehnIka. № 3 (23). S. 9–18. DOI: 10.34169/2414-0651.2019.3(23).3-15.

Borohvostov I. V., Bіlokur M.O. (2019) IsnuyuchI zv’yazki ta protirIchchya naukovo-metodichnogo zabezpechennya oboronnogo planuvannya ta shlyahIv osnaschennya ozbroEnnyam vIyskovih formuvan. Zbirnik nauk. prats TsNDI OVT ZS UkraYini Vip. 1 (72). S. 5–18.

MetodichnI rekomendatsIYi z fInansovo-ekonomIchnogo obGruntuvannya vartostI povnogo zhittEvogo tsiklu spromozhnostey z urahuvannyam printsipIv ta standartIv NATO. ZatverdzhenI MO UkraYini 02.06.2020.

Gary Jones, Erin Ryan, Tony White & Jonathan Ritschel. Investigation into the Ratio of Operating and Support Costs to Life-Cycle Costs for DoD Weapon Systems. Defense ARJ. 2014, № 1 (21) pp. 442–464.

E. Ryan, D. Jacques, J. Colombi, C. Schubert. A Proposed Methodology to Characterize the Accuracy of Life Cycle Cost Estimates for DoD Programs. Procedia Computer Science 2012 №8 S. 361–369. DOI: 10.1016/j.procs.2012. 01.073.

Shtovba S.D. Proektirovanie nechetkih sistem sredstvami MATLAB. Moscow: Goryachaya liniya Telekom, 2007. 288 s.

Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control // IEEE Transactions on Systems, Man and Cybernetics. Vol. 15. No 1. 1985. S. 116–132.

Bellman R., Zade L. Prinyatie resheniy v rasplyivchatyih usloviyah // Voprosyi analiza i protseduryi prinyatiya resheniy: Sb. perevodov / Pod red. I.F. Shahnova. Moscow: Mir, 1976. S. 172–215.

Borisov A.N. Prinyatie resheniy na osnove nechetkih modeley. Primeryi modeley / A.N. Borisov, O.A. Krumberg, I.P. Fedorov. – Riga: Zinatne, 1990. 184 s.

Asai K. Prikladnyie nechetkie sistemyi [per. s yaponskogo] / Pod red. T. Terano, K. Asai, M.Sugeno. Moscow: Mir, 1993. 368 s.

Sugeno M. Industrial applications of fuzzy control. – Elsevier Science Pub. Co., 1985. 269 s.

Bilokur M. O. VibIr vlastivostey OVT pId chas modelyuvannya vartostI stadIy zhittEvogo tsiklu. Zb. nauk. pr. Kyiv: TsNDI OVT ZS Ukraini. 2019. № 4 (75). S. 112–118.

Bilokur M. O. (2020) FunktsIonalne vIdobrazhennya znachen vag v shtuchnIy neyronnIy merezhI viznachenih vlastivostey pri otsInyuvannI alternativnih zrazkIv ozbroEnnya. Ozbroennya ta vIyskova tehnIka. №2 (26). S. 20–31. DOI: 10.34169/2414-0651.2020.2(26).20-31.

Blaug M. Ekonomicheskaya myisl v retrospective. Moskva: Delo Ltd, 1994. 720 s.

Viner Dzh. Kontseptsiya poleznosti v teorii tsennosti i ee kritiki //Vehi ekonomicheskoy myisli. Teoriya potrebitelskogo povedeniya i sprosa. T. 1. Pod red. V.M. Galperina. SPb.: Ekonomicheskaya shkola, 2000.

Rotshteyn A. P. Intelektualnyie tehnologii: nechYotkie mnozhestva, geneticheskie algoritmyi, neyronnyie seti. Vinnitsa: «UNIVERSUM-Vinnitsya», 1999. 320 s.

Averkin A. N., Batyirshin I. Z. i dr. Nechetkie mnozhestva v modelyah upravleniya i iskusstvennogo intellekta / Pod. red. D.A. Pospelova. Moscow: Nauka, 1986. 312 s.

Bellman R.E., Zadeh L.A. (1970) Decision-making in fuzzy environment. Management Science. Vol.17. No.4. S. 141–164.

Melihov A. N., Bernshteyn L. S., Korovin S. Ya. Situatsionnyie sovetuyuschie sistemyi s nechYotkoy logikoy. Moscow: Nauka, 1990. 440 s.

RekomendatsIYi z oboronnogo planuvannya na osnovI spromozhnostey v MInIsterstvI oboroni UkraYini ta Zbroynih Silah UkraYini. Rezhim dostupu: Available from: https://www.mil.gov.ua/content/other/Recommendationson_CBP_120617.pdf.

Harrington, E. C. (1965) The desirable function. Industrial Quality Control. Vol. 21. No. 10. s. 494–498.

Samohvalov Y., Burba O. (2018) OtsInka efektivnostI naukovih I naukovo-tehnIchnih proektIv na osnovI uzagalnenoYi funktsIYi HarrIngtona. Sistemi upravlInnya, navIgatsIYi ta zv’yazku. ZbIrnik naukovih prats. Poltava: PNTU, №. 4 (50). S. 77–85. DOI: 10.26906/SUNZ.2018.4.077.

Saati T. Prinyatie resheniy. Metod analiza ierarhiy. Moscow: Radio i svyaz, 1993. 278 s.

Leonenkov A. V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH. SPb.: BHV Peterburg, 2005. 736 s.

Nor, P. I., Bilokur, M.O., Megey, K.V. (2019) DeyakI osoblivostI oboronnogo planuvannya rozvitku ozbroEnnya ta vIyskovoYi tehnIki Zbroynih Sil UkraYini na osnovI spromozhnostey. Zbirnik nauk. prats / TsNDI OVT ZS Ukrayini. № 3(74). s. 159–169.

Maryutin M. I. Ekonomika proizvodstva, ekspluatatsii i remonta vooruzheniya i tehniki. / M.I. Maryutin, S.Yu. Barkov, B.P. Dolgopolov. Moskva: Voennaya akademiya bronetankovyih voysk im. Malinovskogo R.Y., 1989. 188 s.

Nor P. I., Schipanskiy, P. V., Gogonyants, S. Yu. (2014) Metodika otsInki tehnIchnogo rIvnya zrazkIv ozbroEnnya ta vIyskovoYi tehnIki. Sistemi ozbroennya I viyskova tehnika. № 3. s. 49–54.


Abstract views: 334
PDF Downloads: 377
Published
2020-12-31
How to Cite
Bilokur , M., Sidorenko , E., Khrebet, V., Gomola, I., Hudyma, V., & Kopashynski, S. (2020). Choice of weapon sample based on fuzzy logic in defense management measures. Social Development and Security, 10(6), 78-92. https://doi.org/10.33445/sds.2020.10.6.8
Section
Articles